Update on JULES-ECOSSE-FUN

D. Clark

July 2014
Adding terrestrial N-cycle processes

JULES present

- Dynamic vegetation
- Energy, water, photosynthesis
- Soil C

Developments

- Dynamic vegetation
- Energy, water, photosynthesis
- Plant uptake of N
- Soil C and N

- No representation of soil N and effects on plants
- No layering of soil C
Main connections in JULES-N

Dynamic vegetation model (TRIFFID)

- vegetation amounts and properties (e.g. height, LAI)

JULES
Surface energy balance, soil T and moisture, photosynthesis

- NPP available for growth
- NPP/ N demand soil T and moisture
- soil T and moisture

Plant N uptake model (FUN)

- N availability

Soil C and N model (ECOSSE)

- N extraction
- N availability
- litter inputs
- gas fluxes
- leaching
Decomposition of SOM results in mobilization or immobilization of inorganic N (NO$_3^-$ and NH$_4^+$) to maintain C:N. If insufficient N, decomposition is slowed and produces relatively more CO$_2$.

Plant processes are not part of ECOSSE (in JULES).
Overview of FUN

Fixation and Uptake of Nitrogen (FUN), Fisher et al, 2011, GBC.

• \(N_\text{demand} = C_\text{demand} \times \text{plant N:C} \)

• If passive uptake (via transpiration) is insufficient, plants spend \(C \) (NPP) acquiring \(N \) via 3 mechanisms:
 - active uptake
 - fixation
 - retranslocation.

• Each process has a cost (\(\text{kg C} \ [\text{kg N}]^{-1} \)) and plants optimise \(C \) expenditure.

• Uptake is in inverse proportion to cost (\(\text{kgC/kgN} \)).

• When \(N \) is limiting, NPP available for growth is reduced.
Four types of runs will be described (briefly):

- US forest sites (mainly Duke Forest)
- 10 global benchmarking sites
- Duke and ORNL FACE runs
- Global runs

The focus is on vegetation growth and the N budget.
- 4 soil layers for ‘physics’ and ECOSSE
- ECOSSE called every timestep (30 mins)
- Phenology and TRIFFID called once a day
Duke Forest (FACE, NT), ORNL FACE (BT), Harvard Forest (BT), Morgan Monroe (BT)

Prescribed frac (no competition). Watch Forcing Data. Spin up over 1901-1950, main run 1951-2001. Annual N deposition from ACCMIP multi-model mean, scaled to local obs (where available). No fixation was allowed.
N budget for Duke Forest, 2001

Stores g m\(^{-2}\)
Fluxes g m\(^{-2}\) yr\(^{-1}\)

Plant inputs 12.3

Passive 3.0
Active 9.2
Retrans 0.1

Obs uptake 8
Retrans 2.6

SON \(\Delta = +0.99\)

Net mineralisation 11.3

Plant uptake 12.4

NPP remaining: 587
Spent: 151

Obs NPP ~ 900

Deposition 1.4

Gas loss 0.8

\(N_2O\) 0.5
\(N_2\) 0.3

Plants

Inorganic N \(\Delta = -0.38\)

Leaching 0.0

C budget:
Plant inputs: 569 g m\(^{-2}\) yr\(^{-1}\)
Soil resp: 560 g m\(^{-2}\) yr\(^{-1}\)

C budget:
Plant inputs: 569 g m\(^{-2}\) yr\(^{-1}\)
Soil resp: 560 g m\(^{-2}\) yr\(^{-1}\)
Summary of US forest runs

• Most attention has been paid to Duke Forest (good obs and I started there!).

• Duke NPP rather low despite high N uptake. Active uptake dominant, little retranslocation.

• At other sites passive uptake dominant, little retranslocation.

• NPP is generally rather low, but can possibly be “tuned” back up.
2. Runs at the benchmarking sites

Looking at the 10 sites used in the JULES benchmarking paper – these cover a range of climate/biome types.

<table>
<thead>
<tr>
<th>Name</th>
<th>Obs veg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaamanen</td>
<td>wetl</td>
</tr>
<tr>
<td>Hyytiala</td>
<td>ENT</td>
</tr>
<tr>
<td>Tharandt</td>
<td>ENT</td>
</tr>
<tr>
<td>Harvard Forest</td>
<td>DBT</td>
</tr>
<tr>
<td>Morgan Monroe State Forest</td>
<td>DBT</td>
</tr>
<tr>
<td>Fort Peck</td>
<td>grass</td>
</tr>
<tr>
<td>Bondville</td>
<td>crops</td>
</tr>
<tr>
<td>El Saler</td>
<td>ENT</td>
</tr>
<tr>
<td>Santarem km77</td>
<td>grass</td>
</tr>
<tr>
<td>Santarem km67</td>
<td>DBT</td>
</tr>
</tbody>
</table>

Blyth et al., 2011, GMD
Comparison of JULES and J-EC-FUN.

Forest sites typically spending 10-25% (ave 18%) of NPP on N.

Grasses spending ave 78%: their low C:N results in a large demand for N.
Effect of fixation

NPP from with/out fixation.

JULES-EC-FUN with fixation produces NPP that is broadly similar to that of the no-N model, largely by improving grasses.

22% of NPP is spent on N (was 78%). Fixation is 18% of uptake (28% for grasses).

compare previously
(no fixation)
The default parameters give insignificant retranslocation.

Reducing the cost by a factor of 10 gives retranslocation of 7% on average (as fraction of total uptake).

In general we need to recalibrate FUN to work on a shorter timestep and with ECOSSE-calculated soil N.
Benchmark sites: summary

Broadly reasonable NPP and N uptake for mid-latitude forests without fixation of N, but high demand for N from grasses results in a major reduction in NPP at those sites.

Allowing fixation of N and/or cheaper retranslocation returns NPP at most sites to values broadly similar to those of the standard (no N) model.

Suggests that it might be possible to “tune” the model to give reasonable results.
3. Runs for FACE sites: response to eCO$_2$

• Duke Forest (pine) and ORNL (sweetgum) FACE sites.
 ORNL: 1998-2008 +152ppm CO$_2$

• Run JULES with prescribed land frac (no competition).
 Initial state is a ‘close-to-equilibrium” state using WFD inputs.

• The setup broadly mimics that of Zaehle et al. (2014, New Phyt.).

• Also some equivalent eCO$_2$ runs with standard JULES (no N model).
FACE runs: NPP with ambient CO₂

Results from Zaehle et al. (2014)

JULES NPP is too low, J-EF even lower.
FACE runs: NPP response

NPP response (%)

Results from Zaehle et al. (2014)
FACE runs: NPP response with N fert.

J-EF eCO₂ + extra N deposition (10g m⁻² yr⁻¹)

NPP response (%)

Duke

ORNL

J-EF eCO₂ + Ndep

J-EF eCO₂

FACE runs: N uptake ambient

Results from Zaehle et al. (2014)

Obs

Multi-model mean

Centre for Ecology & Hydrology
NATIONAL ENVIRONMENT RESEARCH COUNCIL

NERC SCIENCE OF THE ENVIRONMENT
FACE runs: N uptake response

Results from Zaehle et al. (2014)

Obs
Multi-model mean
FACE runs: summary

Preliminary results for Duke Forest and ORNL:

• Baseline NPP is low and N uptake is high relative to obs.
 NPP at or below bottom end of ensemble; partly because of expenditure on N but baseline JULES (no N model) is also low.
 N uptake at high end (Duke) or middle (ORNL) of ensemble.
 NUE at or below bottom end of ensemble.

• For what it’s worth....results generally compare reasonably with the (large range of the) multi-model ensemble (not NUE).
Global runs

Comparing JULES, JULES-ECCOSE-FUN and another JULES N scheme (Andy Wiltshire). Using the TRENDY data/protocol. CRU-NCEP meteorology at N96 (HadGEM2-ES), "pre-industrial” spin up. Allowing fixation and cheaper retranslocation.

My current focus is on a transect near 20°E
Broad evolution of veg frac in JULES and JULES-ECOSSE-FUN is similar so far (after ~1000yrs).
Recap

• Runs at US forest sites
 Largely looked at Duke, where Nuptake is high, NPP low with current parameters.

• Runs at benchmarking sites
 Grasses struggling in initial runs.
 Fixation and/or cheaper retranslocation give results more similar to standard JULES.

• Runs at FACE sites
 Broadly reasonable response to eCO₂ (but room for improvement!).

• Global runs
 Spin up of transect at 20°E looks OK (so far).