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A ‘Typical’ Starting Point
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We think it depends on 
some green things



A ‘Typical’ Model
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A ‘Typical’ Test?
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But would this have worked?...
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Rationale for Model Reduction

� Want to assess whether a model has the most 
appropriate level of detail

� We can get some idea on this by comparing 
models of the same system which have different 
levels of detail

� But, we don’t have lots of different models

� So we consider reducing the model we have to 
create alternative model formulations which can 
be compared

� Comparison is restricted 
– reduced models are drawn from the same source

– but hopefully better than no comparison at all



Model Reduction – How?

� Start with a ‘full’ model of a system
� Reduce it (systematically, automatically)

� Producing a ‘set’ of alternative model formulations for the 
same system

� Assess model ‘performance’ by comparing to observation

� Reduction?
– Replace a model variable by zero 

� e.g. ignore diffusion

– But often inter-connected nature of typical models means can’t 
simply leave things out

– Replace a model variable by an alternative formulation 
� e.g. Michalis-Menten becomes linear

– Replace variables with a constant
� Simple case the mean or median that the variable attains in the full 

model

� More sophisticated ‘integrate’ over range of values



Reduction by variable replacement
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Reduction by variable replacement
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Search the ‘replacement space’

� Search the possible 
combinations of 
replacement

� Example case: model with 
3 variables to be replaced

� For each one, test the 
‘performance’ of the model 
(compare to observations)

� Various methods for 
searching, such as

– Exhaustively search all 
combinations

– MCMC walk through the 
combinations of possible 
models discrete space, can 
be quite efficient

– Screening step may be 
useful

V1 V2 V3

Full Model ���� ���� ����

1 ���� ���� ����

2 ���� ���� ����

3 ���� ���� ����

4 ���� ���� ����

5 ���� ���� ����

6 ���� ���� ����

7 ���� ���� ����



Methane emission from wetlands

Walter & Heimann (2000). Global Biogeochemical 
Cycles, 14: 745-765



0

200

400

600

800

1000

1200

0 200 400 600 800 1000

M
e

th
a

n
e

 F
lu

x
 (

m
g

/m
2

/d
)

Time (days) 

Michigan

0

200

400

600

800

1000

1200

1050 1150 1250 1350 1450 1550 1650 1750

M
e

th
a

n
e

 F
lu

x
 (

m
g

/m
2

/d
)

Time (days)

Minnesota

0

50

100

150

200

250

300

1800 1820 1840 1860 1880 1900 1920 1940 1960

M
e

th
a

n
e

 F
lu

x
 (

m
g

/m
2

/d
)

Time (days)

Finland

-10

0

10

20

30

40

50

60

70

1950 1970 1990 2010 2030 2050 2070 2090

M
e

th
a

n
e

 F
lu

x
 (

m
g

/m
2

/d
)

Time (days)

Alaska

0

200

400

600

800

1000

1200

2050 2100 2150 2200 2250 2300 2350 2400 2450 2500

M
e

th
a

n
e

 F
lu

x
 (

m
g

/m
2

/d
)

Time (days)

Panama ‘Nottingham implementation’ of 
the model compared to the 5 

sites used by Walter and 

Heimann (2000)



Candidate reduction ‘variables’
Forcing   

Water table  reduced to a constant 

Temperature constant 

Rates  

Oxidation First order with methane concentration 

 Linear with temperature 

 Independent of temperature 

Production Linear with temperature 

 Independent of temperature 

 Constant vertical distribution of organic matter 

 Constant factor for seasonal variation in NPP 

Fluxes  

Bubbles  Ignored completely 

Diffusion  Ignored completely  

Plant-mediated Ignored Completely  

transport Constant temperature dependent growth factor  

 Constant vertical root density factor  
 



� Compare model to observations

� ‘Probability’ for each replacement combination

Relatively high probability Relatively low probability



Interpretation: Reduction ‘Probabilities’

V1 V2 V3 Model
‘Probability’

Full Model ���� ���� ���� 0.10

1 ���� ���� ���� 0.05

2 ���� ���� ���� 0.40

3 ���� ���� ���� 0.00

4 ���� ���� ���� 0.45

5 ���� ���� ���� 0.00

6 ���� ���� ���� 0.00

7 ���� ���� ���� 0.00

Reduction 
‘Probability’

0.50 0.85 0.00

Required‘Noisy’Redundant



Required Required 
at some sites

Indifferent ‘Noisy’

Forcing   

Water table  reduced to a constant 

Temperature constant 

Rates  

Oxidation First order with methane concentration 

 Linear with temperature 

 Independent of temperature 

Production Linear with temperature 

 Independent of temperature 

 Constant vertical distribution of organic matter 

 Constant factor for seasonal variation in NPP 

Fluxes  

Bubbles  Ignored completely 

Diffusion  Ignored completely  

Plant-mediated Ignored Completely  

transport Constant temperature dependent growth factor  

 Constant vertical root density factor  
 



‘Minimum’ Methane Model

� Variable water table

� Temperature dependent production in saturated 

zone

� Oxidation rate in aerobic zone dependent on 

methane concentration

� Plant mediated transport dependent on methane 

concentration

� Diffusion required, especially if site has ‘rootless’

vegetation

� Important limitation of this analysis

– Not considered the implications for ‘global’
parameterisation (Walter et al, JGR, 2001)
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Other applications…

� Applied the same/similar approach to other 

models, e.g.

– Marine Ecology Models (carbon cycling)

– Soil-plant radiocaesium models

– FARM-ADAPT – very large farm management model

– Wheat simulation model

– Soil carbon nitrogen ecosystem model

� Noisy and redundant variables are ubiquitous



More broadly...

� Model formulation is usually uncertain

� Model reduction provides a way to test (brutally) 

model formulation

� Aim is to test the ideas that make the models

– Not to test the model as whole

� …all models are wrong, some bits of models are 

useful…
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