Using satellite estimate of land surface temperature to assess the performance of the soil physics in JULES

Rich Ellis (1), Heather Ashton (2), Christopher Taylor (1), Maliko Tanguy (3), Martin De Kauwe (4)

1. Centre for Ecology and Hydrology
2. UK Met Office
3. Universidad de politecnica de Cartagena, Ingeniería de Alimentos y del Equipamiento Agrícola
4. Department of Biological Science, Macquarie University
JULES moisture/energy fluxes

- Θcrit controls
 - Bare soil evaporation
 - Plant transpiration
Soil texture to hydraulic parameters

- Sand, silt, clay
 - Van Genuchten,
 - Cosby et al
 - Brooks Corey

<table>
<thead>
<tr>
<th>Data set</th>
<th>θ_{crit}</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Type IM2</td>
<td>0.244</td>
</tr>
<tr>
<td>BADC IGBP</td>
<td>0.333</td>
</tr>
<tr>
<td>ISLCP (continuous)</td>
<td>0.307</td>
</tr>
<tr>
<td>3 Type IM1</td>
<td>0.367</td>
</tr>
</tbody>
</table>

http://en.wikipedia.org/wiki/Water_retention_curve
Seasonal temperature cycle
Model and MODIS seasonal range

Seasonal temperature range (August – May)

• Princeton driving data: 1° resolution, 3 hourly
• Monthly means over the 2000-2008 period
• Cosby et al transfer functions on ISLSCP continuous soil texture data
FSMC and seasonality
Improved seasonality

MODIS

Model

MODIS

New Model

NERC National Centre for Earth Observation

Centre for Ecology & Hydrology
Evaporation in Iberia

EF = (B - A) / (C - A)

ET = Energy * EF
JULES with new parameters
Periodicity of West African land-surface temperature
Influence of land cover
Model and MODIS
Taking this forward

- Sensitivity JULES other parameters
- Orography
- Mapping pfts
- Crops in JULES
- Changing water cycles
 – SWELTER
Beyond FSMC