Global impact of seasonal to inter-annual LAI: fluxes of moisture and heat.

Richard Ellis¹,
Christopher Taylor¹, Sietse Los².
Land-surface atmosphere coupling strength.

Koster et al 2002
Forcing data.

1. **GSWP2**
 - 1 degree global coverage. Time step of 3 hours.
 - Covers the years 1986-1995.
 - Short wave radiation, long wave radiation, liquid precipitation, solid precipitation, surface temperature and surface pressure. http://www.iges.org/gswp2/

2. **fAPAR**
 - 1 degree/8km global coverage. Time step of 10 days.
 - Covers the years 1982-1999. http://www.neodc.rl.ac.uk/
European case

Moisture flux components
Lat 45 to 55 Lon 15 to 25

- Vary LAI. CNTRL LAI.
- Vary M flux. CNTRL M flux.

- Vary surface. CNTRL surface.
- Vary canopy. CNTRL canopy

- Vary soil. CNTRL soil.
- Vary stomatal. CNTRL stomatal.
African case

Moisture flux components
Lat -13.5 to -4.5 Lon 17.5 to 28.5

Vary LAI. CNTRL LAI. Vary M flux. CNTRL M flux.

Vary surface. CNTRL surface. Vary canopy. CNTRL canopy

Vary soil. CNTRL soil. Vary stomatal. CNTRL stomatal.
\[R_{\text{soil}} = 100/g_{\text{soil}} \]

So a change in \(g_{\text{soil}} \) from 0.25 to 0.2, results in an increase in resistance 100ms\(^{-1}\) (400 to 500).
Influences of moisture fluxes in the model.

With no atmospheric interaction i.e. with one way meteorological forcing, the factors that influence the moisture flux are:

• Radiation interception,
• Soil moisture,
• LAI.

So LAI will only have an impact if the radiation and soil moisture are not dominant.
Improving land surface representation in the GCM.

• Use satellite data to identify regions of soil stress.
• Does the model show stress in these regions?
• If not why not?
Sum of absolute differences $VARY_LAI - CNTRL_LAI$

$$\Sigma \ ABS(\text{SHF}_{VARY_LAI} - \text{SHF}_{CNTRL})$$