Implementation and Evaluation of a Biogenic Isoprene Emissions scheme in JULES

Federica Pacifico(1, 2, 3), Sandy Harrison(4), Chris Jones(3), Stephen Sitch(1), Gerd Folberth(3)

(1) University of Exeter, UK
(2) University of Bristol, UK
(3) Met Office Hadley Centre, Exeter, UK
(4) Macquarie University, Australia
Contents

- Subject of Study
- Model Description
- Model Evaluation
- Model Applications
- Conclusions
Federica Pacifico: Biogenic Isoprene Emissions in JULES

Subject of Study

BVOCs

Vegetation emits a wide range of Biogenic Volatile Organic Compounds

SOA

Accumulation of CH₄

SUNLIGHT+NOX+VOC=O₃

O₃ vegetation damage

Reduce quality and quantity of the crops
This model is based on Arneth et al., 2007 and Niinemets et al., 1999

\[I = IEF \frac{A_{canopy} + R_{Dcanopy}}{A_{st} + R_{Dst}} f_T \cdot f_{CO_2} \]

- **I** Above-canopy isoprene emission
- **IEF** Isoprene Emission Factor, i.e. basal isoprene emission at the leaf level in standard conditions. This factor is Plant Functional Type-dependent in JULES.
- **\(A_{canopy} \)** Net photosynthesis rate at the canopy level
- **\(R_{Dcanopy} \)** Respiration rate at the canopy level
- **\(f_T \)** This empirical factor takes into account the fact that although isoprene is produced in the chloroplast from precursors formed during photosynthesis, there are differences in the short-term response of carbon assimilation and isoprene emission, such as the higher temperature optimum of isoprene synthase.
- **\(f_{CO_2} \)** This empirical factor models the inhibition of isoprene emission with increasing atmospheric CO\(_2\) concentration, and vice versa the increase of isoprene emissions with decreasing atmospheric CO\(_2\) concentration. It is relevant for past and future estimates of isoprene emissions.
- **-st** indicates standard conditions, i.e. temperature \(T_{st} \) of 30°C, photosynthetically active radiation of 1000\(\mu \)mol/m\(^2\)/s and CO\(_2\) atmospheric concentration of 370 ppm.
Diurnal and Seasonal Variability at the above-canopy isoprene flux measurement sites.
Comparison with satellite-derived isoprene estimates over south America and east and south Asia
Present-day (1990s) global isoprene emissions with JULES: 535 TgC/yr.

Published estimates: 400-600 TgC/yr (Arneth et al., 2008 ACP).
Federica Pacifico: Biogenic Isoprene Emissions in JULES

Model Applications

BIOGENIC ISOPRENE EMISSIONS

![World map showing biogenic isoprene emissions](image)

<table>
<thead>
<tr>
<th>Isoprene Emission at LGM (TgC/yr)</th>
<th>Isoprene Emission at PI (TgC/yr)</th>
<th>Decrease in Isoprene Emission at the LGM compared with PI (%)</th>
<th>Impact on CH<sub>4</sub> (ppb)</th>
<th>Isoprene Emission Model</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>343</td>
<td>502</td>
<td>-32%</td>
<td>n.a.</td>
<td>Guenther et al., 1995</td>
<td>Adams et al., 2001</td>
</tr>
<tr>
<td>331</td>
<td>702</td>
<td>-33%</td>
<td>n.a.</td>
<td>Guenther et al., 1995</td>
<td>Lathière et al., 2005</td>
</tr>
<tr>
<td>229</td>
<td>394</td>
<td>-61%</td>
<td>-238</td>
<td>Guenther et al., 1995</td>
<td>Valdés et al., 2005</td>
</tr>
<tr>
<td>335</td>
<td>541</td>
<td>-38%</td>
<td>-385</td>
<td>Guenther et al., 1995</td>
<td>Kaplan et al., 2006</td>
</tr>
<tr>
<td>357</td>
<td>447</td>
<td>-20%</td>
<td>n.a.</td>
<td>Arneth et al., 2007b</td>
<td>Arneth et al., 2007</td>
</tr>
<tr>
<td>428</td>
<td>567</td>
<td>-24%</td>
<td>-108</td>
<td>Pacifico et al., 2011</td>
<td>This study</td>
</tr>
</tbody>
</table>

(early 20th century)
Federica Pacifico: Biogenic Isoprene Emissions in JULES

Model Applications

<table>
<thead>
<tr>
<th></th>
<th>Isoprene Emissions (TgC/yr)</th>
<th>GPP (PgC/yr)</th>
<th>CO₂ (ppm)</th>
<th>Air Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present-day 2000-2009</td>
<td>460</td>
<td>146</td>
<td>368</td>
<td>14.1</td>
</tr>
<tr>
<td>Pre-Industrial 1860-1869</td>
<td>579</td>
<td>119</td>
<td>286</td>
<td>13.4</td>
</tr>
<tr>
<td>Future (RCP 8.5) 2100-2109</td>
<td>456</td>
<td>239</td>
<td>936</td>
<td>18.8</td>
</tr>
<tr>
<td>Future (RCP 2.6) 2100-2109</td>
<td>461</td>
<td>162</td>
<td>421</td>
<td>15.4</td>
</tr>
</tbody>
</table>

Pacifico et al., 2012 JGR

BIOTIC ISOPRENE EMISSIONS CHANGES

PRESENT-DAY

- **Isoprene Emissions (TgC/yr)**: 460
- **GPP (PgC/yr)**: 146
- **CO₂ (ppm)**: 368
- **Air Temperature (°C)**: 14.1

PRE-INDUSTRIAL

- **Isoprene Emissions (TgC/yr)**: 579
- **GPP (PgC/yr)**: 119
- **CO₂ (ppm)**: 286
- **Air Temperature (°C)**: 13.4

FUTURE

- **Isoprene Emissions (TgC/yr)**: 456
- **GPP (PgC/yr)**: 239
- **CO₂ (ppm)**: 936
- **Air Temperature (°C)**: 18.8

- **Isoprene Emissions (TgC/yr)**: 461
- **GPP (PgC/yr)**: 162
- **CO₂ (ppm)**: 421
- **Air Temperature (°C)**: 15.4
Model Applications

<table>
<thead>
<tr>
<th>20% decrease in isoprene emissions</th>
<th>Ozone burden</th>
<th>Methane Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under Pre-Industrial (1860-1869) conditions</td>
<td>+ 0.7 Tg + 0.2%</td>
<td>- 9 months - 80 ppb - 44 mW/m²</td>
</tr>
<tr>
<td>Under Present-day (2000-2009) conditions</td>
<td>- 2 Tg - 2%</td>
<td>- 3 months - 59 ppb - 22 mW/m²</td>
</tr>
</tbody>
</table>

Pacifico et al., 2012 JGR

BIOGENIC ISOPRENE EMISSIONS

![Map of global distribution of biogenic isoprene emissions.](image)
Conclusions

- Scheme available to study Biogenic Isoprene Emissions at different locations/historical periods

- Modifying the Photosynthesis Scheme will affect the isoprene scheme, e.g. direct/diffuse radiation (can_rad_mod 5)

- Possible Improvements: phenology; make the isoprene scheme more process-based, less empirical; evaluation against newly available data
Thanks