Modelling Forest Thinning Effects by Reduction of Leaf Area Index in JULES LSM

Juhan Park¹, Hyun Seok Kim¹²³

¹Department of Forest Sciences, Seoul National University, Korea
²National Center for Agro Meteorology, Korea
³Research Institute of Agricultural and Life Sciences, Seoul National University, Korea
Outline

- Forest Management in Land Surface Model
- Thinning-induced changes of microenvironmental conditions
- The effects of thinning on stand transpiration and productivity
- Modelling thinning effects by modifying leaf area index
LMC Vs. LCC

- Impacts on surface temperature
 - Land Management Change (LMC) \equiv Land Cover Change (LCC) [Luyssaert et al. 2014]

Biophysical effects of land management change, or land cover change
Forest Management Effects

- **Biogeochemical changes**
 - Carbon sink strength
 - Direct carbon uptake capacity
 - GHG emissions

- **Biophysical changes**
 - Forest structural changes
 - Albedo, Energy partitioning to sensible heat flux
 - Water and Energy fluxes
Consequence of Forest Management

[Naudts et al. 2016]
Thinning?

- Partial removal of trees from forest plantations

Objects
- Reduce competition intensity among trees
- Produce more valuable trees
- Reduce natural fire risk
- Promote the forest health

Image source: [www.qlg.org/pub/act/lnf/lnf1.htm]
Schematic Representation of Thinning

Before

After
Changes of Environmental and Physiological Conditions by Thinning

<table>
<thead>
<tr>
<th>+</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Water Content</td>
<td>Leaf Area</td>
</tr>
<tr>
<td>[Lagergren et al., 2008; Simonin et al., 2007]</td>
<td></td>
</tr>
<tr>
<td>Competition</td>
<td>Basal Area</td>
</tr>
<tr>
<td>Hydrological Conductivity</td>
<td>Damage (Stress)</td>
</tr>
<tr>
<td>[Shinozaki et al., 1964a; b]</td>
<td>[Harrington and Reukema, 1983]</td>
</tr>
<tr>
<td>Fertilization effect</td>
<td></td>
</tr>
<tr>
<td>[Wollum and Schubert, 1975]</td>
<td></td>
</tr>
</tbody>
</table>
Thinning Effects on Productivity

High site fertility

(A)

Low site fertility

(B)

Early onset

Late onset

[Diameter increment (mm/yr)]

[C L M H]

[Mäkinen and Isomäki, 2004]

[Franklin et al., 2009]
The Objectives

- Quantify the effects of thinning on stand transpiration and productivity

- Modelling thinning effects with JULES land surface model
Part 1.
Quantification of Thinning Effects on Stand Transpiration and Productivity
Study Site

Mt. Taehwa
Gyounggi-Do, Korea

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thinning area (ha)</td>
<td>0.54</td>
</tr>
<tr>
<td>Altitude (m)</td>
<td>129~219</td>
</tr>
<tr>
<td>Aspect</td>
<td>NE 50~60</td>
</tr>
<tr>
<td>Annual precipitation (mm)</td>
<td>1329.2</td>
</tr>
<tr>
<td>Annual mean air temperature (°C)</td>
<td>10.3</td>
</tr>
<tr>
<td>Tree height (m)</td>
<td>19.1</td>
</tr>
<tr>
<td>Mean DBH (cm)</td>
<td>27.9</td>
</tr>
<tr>
<td>Stand density (no./ha)</td>
<td>440</td>
</tr>
</tbody>
</table>
Thinning Treatments

20%

40%

75m

50m
Stand Transpiration - Sapflux Density

- Thermal dissipation probe methods (Granier, 1985)

\[\Delta T = T_H - T_R \]
Stand Productivity

- Allometric equation
 \[Y = 0.2849 \times (DBH)^{2.0553} \]
 [Ryu et al. 2014]

- Dendrometer
Environmental conditions

<table>
<thead>
<tr>
<th></th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ta</td>
<td>10.7</td>
<td>11.0</td>
<td>11.4</td>
</tr>
<tr>
<td>Q</td>
<td>293.4</td>
<td>271.1</td>
<td>262.4</td>
</tr>
<tr>
<td>D</td>
<td>0.53</td>
<td>0.53</td>
<td>0.52</td>
</tr>
<tr>
<td>PRCP</td>
<td>1685.6</td>
<td>1366.9</td>
<td>791.5</td>
</tr>
</tbody>
</table>
Thinning - Stand Transpiration

\(E_T (\text{mm y}^{-1}) \)

Year

- Con
- LT
- HT
Thinning - Diameter Growth

![Graph showing Thinning - Diameter Growth](image)

- **RGR (%)**
- **DBH increment (mm)**
- **DOY**

The graph compares the growth rate (RGR) and diameter increment (DBH) over the years 2012, 2013, and 2014. The data is categorized into 'Con', 'LT', and 'HT'.
Thinning - Stand Productivity

![Graph showing NPP (gC m\(^{-2}\) yr\(^{-1}\)) from 2012 to 2014 for different treatments: Con, LT, HT.](image-url)
Thinning - Water Use Efficiency

![Graph showing water use efficiency over time for different treatments (Con, LT, HT). The graph plots WUE (gC kg H₂O⁻¹) against years 2012, 2013, and 2014.]
Part 2. Modelling Thinning Effects by Reduction of Leaf Area Index
Procedure of Thinning Effects Estimation by JULES LSM

- **Site-specific Optimization of the Model**
 - Sensitivity of canopy radiation transfer model
 - Sensitivity test and modification of plant functional type related parameters
 - Model validation by comparing with EC flux data

- **Estimation of Thinning Effects**
 - Modification of LAI input data by measured thinning induced reduction and recovery of LAI
Sensitivity of Canopy Radiation Modules

The graph plots GPP_{est} (KgC m$^{-2}$ y$^{-1}$) against GPP_{Obs} (KgC m$^{-2}$ y$^{-1}$). The data points for sites R1 to R6 are represented by different symbols. The dashed line indicates a 1:1 ratio.
Parameter Sensitivity Analysis

Changes in GPP (%)

Changes in LE (%)

-30% -20% -10% 10% 20% 30%
Model Validation
- Model estimation Vs. EC-measured flux

\[r^2 = 0.77 \]

\[r^2 = 0.46 \]
Leaf Area Reduction by Thinning

![Graph showing LAI (m² m⁻²) over time for different treatments: Con, LT, HT.](image)
LAI Reduction – GPP/NPP

![Graph showing GPP and NPP over years with different LAI categories.]

- GPP (gC m⁻² y⁻¹)
- NPP (gC m⁻² y⁻¹)
- LAI categories: Con, LT, HT
LAI Reduction - LE

![Graph showing LAI Reduction - LE](image)

- **LAI (LE)**: LE (M J m⁻² y⁻¹)
- **Year**:
 - 2008
 - 2010
 - 2012
 - 2014
- **Legend**:
 - Con
 - LT
 - HT
Difference b/w Measurement and Modeling Results

![Graph showing NPP (gC m^{-2} yr^{-1}) over years from 2012 to 2014, comparing Con, LT, and HT conditions.]

![Graph showing NPP (gC m^{-2} yr^{-1}) over years from 2008 to 2014, focusing on a specific year range from 2012 to 2014.]

29/30
Conclusion

- Initial reduction and gradual recovery of stand transpiration and productivity by heavy thinning

- Decrease of GPP, Increase of NPP, little change in LE by model estimation with reduced leaf area

- There is discrepancy between field measured thinning effects and model estimated thinning effects, which reveals thinning related changes are not constraint by leaf area reduction
Thank You

This work was funded by the Weather Information Service Engine Program of the Korea Meteorological Administration under Grant KMIPA-2012-0001.