Improving representation of radiation interception and canopy photosynthesis within JULES

Lina Mercado, Chris Huntingford, John Gash, Peter Cox, Richard Ellis, Doug Clark, Paul Alton and other CLASSIC partners

JULES launch
Reading, 02.10.06
Why are we looking at radiation interception and carbon uptake within JULES?

Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model

Peter M. Cox*, Richard A. Betts*, Chris D. Jones*, Steven A. Spall* & Ian J. Totterdell†

* Hadley Centre, The Met Office, Bracknell, Berkshire RG12 2SY, UK
† Southampton Oceanography Centre, European Way, Southampton SO14 3ZH, UK
Radiation interception: old vs new approach

Beer’s law
\[I = I_0 \cdot e^{-k \cdot LAI} \]
No scattering: i.e. sum of reflected and transmitted light

Two stream approximation (Suits, 1972; Sellers, 1995):
Vertical profiles:
upward and downward diffusive radiative fluxes

Takes into account:
- Leaf and soil scattering
- LAI and Leaf angle distribution
- Angle of incident radiation
- Diffuse and direct radiation
Canopy photosynthesis: old vs new approach

Big leaf
- 1 single layer
- Photosynthesis: Proportional to average absorbed irradiance
 \[\Sigma \text{leaf capacities} \]

Multilayer
- \[\Sigma \text{photosynthesis at each layer} \]
- VERTICAL variations in light (homogeneous)
- variations in parameters \[N = f(V_{\text{max}}) \]
- canopy microclimate (T, VPD)

Standard JULES

\[V_{\text{max}} = K \]

\[V_{\text{max}} \neq K \]
Model evaluation: rainforest site

\[A_n = \text{net carbon uptake} = \text{Total photosynthesis (GPP)} - \text{leaf respiration} \]

Big leaf model
\[y = 0.85x \quad r^2 = 0.89 \]

Multilayer
\[V_{\text{max}} = K \]
\[y = 0.83x \quad r^2 = 0.92 \]
\[V_{\text{max}} \neq k \]
\[y = 0.86x \quad r^2 = 0.93 \]
Further Analysis: rainforest site

Possible reasons for remaining discrepancy

- A_n data (NEE + ecosystem respiration) is too high:
 ecosystem respiration (soil CO_2 efflux)

- Model A_n is too low:

 model parameters: increase V_{max}
 model process: decrease leaf respiration due to light inhibition (Brooks & Farquhar 1985)

V_{max}= 18% higher (42-50 μmol m$^{-2}$ s$^{-1}$)
$y = 0.96x$ $r^2 = 0.92$

Inhibition of leaf respiration by light
$y = 0.96x$ $r^2 = 0.93$
Initial results from global implementation

Comparison of GPP and $\text{NPP} = \text{GPP} - \text{Plant Respiration}$

big leaf (BL) & multilayer (ML) approach ($v_{\text{max}} = k$)

Mean June from 1986-1995

$\text{GPP (ML)} - \text{GPP (BL)}$

$\text{NPP (ML)} - \text{NPP (BL)}$

Acknowledgements to Doug Clark and Richard Ellis for gridded JULES and global runs
Conclusion

- Jules with multilayer gives improved results to big leaf

- Jules is able to represent the observations

- Initial global simulations indicate main differences in GPP using multilayer approach in the tropics
Further work

Further improvements are obtained for the tropical site
- Increasing V_{max} or
- Including inhibition of leaf respiration by light

Initial global simulations indicate
a reduction of tropical NPP with multilayer
approach

Current work
Implementation of varying N with canopy depth
Implementation of inhibition of leaf respiration by light

Outlook
- Validation of global model (GPP)
- Tool to simulate effects of diffuse irradiance on GPP