Getting your Science in the Unified Model and part of the weather, climate and earth system models

Andy Wiltshire
Unified Model (UM)

• Same code base applied to weather, climate and earth system applications.
 – JULES is one component of the UM, alongside NEMO, SOCRATES, UKCA, ...
 – Unified as the same ‘core’ is applied across all spatial and temporal timescales and applications

• Significant Model configurations
 – Weather
 – Climate
 – Earth System
Configurations versus Model release

• Configurations are maintained between model releases and should be reproducible
 – Run same experiment different model should give same answer

• Ideally would talk about model release and configuration together when presenting results.
MO led Science Configurations

Time

GO.. → GA6
GO.. → GA7
GO.. → GA8
JULES-ES

- JULES-GL7
- Extended PFTS
- Crop PFTS
- Nitrogen Cycle
- BVOC model
- Wetlands
- Ice model

JULES-ES
Backwards compatibility/reproduceability

• JULES releases are not necessarily entirely backwards compatible
 – New science introduced over a number of releases
 • In general users should wait until a configuration release is available before using it.
 – Bug fixes
 • Often temporary switches are used to fix a bug. Switches set initially to .F., then moved to .T.

• Too many possible switch configurations to test entire resilience
Bit reproducibility

• This is the result that two runs of same science configuration give the same result to the last significant bit
 – Can be applied across model releases
 – Can be applied across processor configurations

• Only for significant science configurations is this enforced.
 – This is the role of rose-stem

• Minor configurations can be updated given agreements with the configuration/module leaders
Code Testing

• Rose-stem is the backbone of our testing system to ensure code resilience
 – Essential to maintain systems integrity
 – Useful to all, that we have a basis from which to work that has passed a number of significant tests.

• Two forms:
 – JULES: Tests core configs and more
 • Add tests to add resilience to your code
 – UM: Weather, Climate, Earth System
Code submission

- Split large developments over release cycles
- Submit ASAP after a release
 - Avoid conflicts with new code on the trunk
 - Take advantage of limited technical support available
Getting code into major configurations

• Get code onto the trunk – technical testing
• Do science testing –
 – use standard base configuration
 – demonstrate impact/importance of your change
 – show not overly negative on other components
 – Use evaluation tools
 • ESMValTool – www.esmvaltool.org
 • iLAMB – www.ilamb.org
 • AutoAssess – Met Office tool

• Criteria
 – Demonstrated benefit
 – Conserves water and carbon
 – Globally applicable
 – Appropriate order of complexity
Configurations – see JULES pages

- JULES-C
 - 5 PFT HadGEM2-ES like setup currently widely used
- JULES – GL7
 - Plan JULES config available in the autumn
- JULES – Trait
 - Anna’s setup with extended PFTs and trait-based physiology
- JULES-Crop
 - Setup with the prognostic crop model
- JULES-Fire
 - INFERNO fire model
- JULES-ES
 - Currently being tuned – available from the autumn
Define new configurations

- Impacts configuration – Exeter University
- UK high-res configuration – CEH
- ...

- Need updated rose-stem tests for scientifically assured quality.
- Minor configurations can be updated during a development phase
Summary

• Configurations
 – Use standard configurations – some basis for scientific quality
• Test code thoroughly and submit to trunk early
• Use rose-stem to protect your code
• Seek advice from the community
• ES – Talk to me
• Physical model – discuss with module leaders as first point of contact