Recent evolutions of ORCHIDEE, progress toward a 3rd generation land surface model.

The ORCHIDEE Team
ORCHIDEE: 20-yr of development

History:

Global GCM: W / E (SECHIBA)
(Laval et al., 1981)

80s

Inclusion C (ORCHIDEE)
(Ducoudré et al., 1993)
(Viovy et al., 1997)
(Polcher et al., 1998)

90s

Focus on Physic..
(Krinner et al., 2005)

2000

New dev. in biogeochemistry

2009

………
ORCHIDEE: 20-yr of development

Challenge:
- maintain coherence &
- describe feedback
- between Physic and Biogeochemistry

History:
- Global GCM: W / E (SECHIBA)
- Inclusion C (ORCHIDEE)
- Focus on Physic..
- New dev. in biogeochemistry

80s (Laval et al., 1981)
90s (Ducoudré et al., 1993)
2000 (Viovy et al., 1997)
2009 (Polcher et al., 1993)
2009 (Krinner et al., 2005)

Energie budget
- complex feedbacks

Water budget
Carbone / Nitrogen budgets
Overview

• The multi-layers soil hydrology scheme
• The new snow scheme & High latitude processes
• Swamps and floodplains
• Improved soil carbon decomposition
• A new multi-layers canopy energy scheme
• Conclusions
Recent improvements of ORCHIDEE

- Generalization of PFT concept (unlimited, currently 13)
- Analytical soil C spin-up
Multi-layer soil hydrology

• Why a “new” physically-based scheme (vs old double-bucket scheme)?
 – Better represent Infiltration vs Runoff processes
 – Plant water uptake:
 • Different plants have different root profiles
 • Compute hydraulic lift: from soil to leaf water potential
 – SOM decomposition is a function of W, T,..
Soil moisture evolution

Comparison with SMOS data

REMEDHUS site in central Spain:

- Lon: -5.3, lat: 41.3.
- 5 days average to reduce instrument noise

REMEDHUS: spread between 19 stations

- SMOS pixel
- **ORCHIDEE** forced by ERA
- **ORCHIDEE** by WFDEI

- The general annual cycle is rather well captured.
- The drying is stronger in SMOS and ORCHIDEE.
- SMOS signal is the most spiked observation.

Polcher et al. RSE, 2015
Multi-layer snow scheme

• 3 layers scheme to improve:
 – Snow dynamic (spring)
 – Snow – vegetation interactions (Shrub, grass, ..)
Evaluation on new snow scheme

Daily snow depth (density, SWE) for Northern Eurasia,
165 stations HSDSD (1979-1992)

Corr: 0.78 -> 0.83
RMSE: 0.12 -> 0.10 m
MBE: -0.05 -> 0

Wang et al., JGR, 2013
A new satellite-derived map of maximal fraction of floodplains and swamps

Initially for ORCHIDEE: GLWD (Lehner & Döll, 2004)
Applications: d'Orgeval & al. (2008)
Combines Prigent et al. Estimates and SAR observations.

Guimberteau et al., HESS, 2012
A new satellite-derived map of maximal fraction of floodplains and swamps

Maximal fraction within the mesh (%)

Guimberteau et al., HESS, 2012
A new satellite-derived map of maximal fraction of floodplains and swamps

Interannual variation of monthly water height index (m) on the Negro

Maximal fraction within the mesh (%)
Impact on the discharge at Óbidos

With GLWD map

Observations

With PRIMA map

With PRIMA map + T_{fp} calibration

Nash: 0.40 → 0.80

Guimberteau et al., HESS, 2012
New soil carbon decomposition scheme

• Motivations
 – Current model (century) simple missing processes (i.e. priming)
 – Effect of temperature and moisture still relatively simple
New soil carbon decomposition scheme

• Motivations
 – Current model (century) simple, missing processes (i.e. priming)
 – Effect of temperature and moisture still relatively simple
A NEW SOIL CARBON MODULE

- Discretized soil carbon (11 layers) + new pools introduced (DOC)

- New decomposition scheme (priming):

\[
\frac{\partial SOC}{\partial t} = I - k_{SOC} \times SOC \times (1 - e^{-c \times FOC}) \times \theta \times \tau
\]

<table>
<thead>
<tr>
<th>Depth (mm)</th>
<th>For each layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.96</td>
<td></td>
</tr>
<tr>
<td>5.87</td>
<td></td>
</tr>
<tr>
<td>13.69</td>
<td></td>
</tr>
<tr>
<td>29.33</td>
<td></td>
</tr>
<tr>
<td>60.61</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td></td>
</tr>
<tr>
<td>248</td>
<td></td>
</tr>
<tr>
<td>498</td>
<td></td>
</tr>
<tr>
<td>999</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
</tr>
</tbody>
</table>

For each layer:

- CO₂

Between layers:

- Decomposition
- Heterotrophic respiration
- (De) sorption
- Advection/liquid
- Diffusion/ Bioturbation

Runoff x DOC → → →

Drainage x DOC → → →
Impact of new scheme on total SOM

Soil Carbon stock (Gt C)

Global

New ORC
Old ORC

Modelled stock (Pg-C)

HWSD stock (Pg-C)

Slope = 0.95
NSD = 0.07
Pearson’s corr. = 0.95

Slope = 0.76
NSD = 0.09
Pearson’s corr. = 0.95

New World
Old World

As
N-Am
S-Am
Eu
Au

N-Am
S-Am
Eu
Au

New ORC
Old ORC
A new multi-layer energy balance scheme

• Why a multi-layer energy canopy scheme?

- Poorly represent site-level heat fluxes
- Canopy space and Trunk crown have different behaviours
- Under-storey vs over-storey representation?
- Link to atmospheric turbulence
Multi-layer scheme implementation

- Free number of layers
- E / W / C exchange at each level
- Turbulence mixing within air canopy
- Light penetration following Pgap model

Implementation constraints:
- Coupling with plant growth / harvesting module (variable plant height)
- Implicit coupling with Atmospheric model (30’ step)
- Parametrisation of intra-canopy turbulence

Ryder et al, GMD, 215
Site evaluation of the model

→ Availability of vertical profiles for Temp, Wind, Rh is crucial
Temperature profile at Tumbarumba site

Observations

Model

Ryder et al., GMD, 215
Multi-Layer Latent Heat Flux

Monthly average flux (months change from one site to the other)

Chen et al. In preparation
What can we learn from Data Assimilation?

- Optimization of ORC parameters
 - ✓ FluxNet data (70 sites)
 - ✓ ≈ 25 optimized parameters / PFT

- Parameter errors can be nearly as large as Structural errors
- Large param. error correlations
- Highlight model deficiencies

Cost function: \[J(x) = \frac{1}{2} \left[(y - M(x))^T R^{-1} (y - M(x)) + (x - x_b)^T P_b^{-1} (x - x_b) \right] \]

Puechabon Fluxnet site (2004)
Bacour et al. sub
Conclusion

• Soil physic (W, C, E), snow are critical..
• Escaping from the “big leaf” concept will be part of 3rd gen. LSMs.
• Parametrization are critical and may depend on scale considered.
• We need to better use data on plant traits and other ecological characteristics.
• Biogeochemistry & Biophysics should be developed together.
• Difficult to maintain coherence between various component!
Thanks for your attention.

ORCHIDEE
yesterday
(many branches)

ORCHIDEE
tomorrow
All developments into main Trunk