Publications using or describing JULES

For the 'technical documentation' papers Best et al. (2011) and Clark et al. (2011) please see the About page. For some relevant pre-2007 publications, see the table of Archive versions here.

You should be able to download Hadley Centre Technical Notes from here. If you can't get hold of any paper below via institutional subscriptions to the relevant journal, please email the JULES help list (the request will be well-received because we know many don't have easy access and someone will almost certainly have it!).

If you would like to have your paper using JULES listed here, please send us an email and we will add it (see Contact Us at the foot of this page).


*** For the JULES Special Issue in GMD (maintained by JLMP), see here (n.b. this is being kept open indefinitely and is always open to new articles) ***



Mathison, C., Burke, E., Hartley, A. J., Kelley, D. I., Burton, C., Robertson, E., Gedney, N., Williams, K., Wiltshire, A., Ellis, R. J., Sellar, A. A., & Jones, C. D. (2023). Description and evaluation of the JULES-ES set-up for ISIMIP2b. Geoscientific Model Development16(14), 4249–4264. link

Raoult N et al. Combining local model calibration with the emergent constraint approach to reduce uncertainty in the tropical land carbon cycle feedback. link

Rumbold H et al. Assessing methods for representing soil heterogeneity through a flexible approach within the Joint UK Land Environment Simulator (JULES) at version 3.4.1. link



Bruhn D, Newman F, Hancock M, Povlsen P, Slot M, Sitch S, Drake J, Weedon GP, Clark DB, Pagter M, Ellis RJ, Tjoelker MG, Andersen KM, Correa ZR, McGuire PC, Mercado LM. Nocturnal plant respiration is under strong non-temperature control. Nature Communications. link

Chou H, Heuminski de Avila AM & Bray M (GMD). Evaluating the Atibaia River hydrology using JULES6.1. link

Donato K, Zeri M, Williams K. Padrões espaciais e temporais da umidade do solo no Nordeste do Brasil (Spatio-temporal patterns of soil moisture over the Brazilian Northeast). In: Candiani G & Viesba L. Ciências Ambientais: Pesquisas e experiências multidisciplinares. Diadema, V&V Editora, pp. 12-27. link

Huntingford C, Burke EJ, Jones CD, Jeffers ES & Wiltshire AJ. Nitrogen cycle impacts on CO2 fertilisation and climate forcing of land carbon stores. Environmental Research Letters 17:4. link

Marthews TR, Dadson SJ, Clark DB, Blyth EM, Hayman G, Yamazaki D, Becher ORE, Martínez-de la Torre A, Prigent C & Jiménez C (HESS). Inundation prediction in tropical wetlands from JULES-CaMa-Flood global land surface simulations. link

Marthews TR, Lange H, Martínez-de la Torre A, Ellis RJ, Chadburn SE & De Kauwe MG. Climate and land surface models: Role of soil. In: Oliver M, (ed.) Encyclopedia of soils in the environment (2nd ed.), Elsevier.

Nakhavali, MA, Mercado LM, Hartley IP, Sitch S, Cunha FV, di Ponzio R, Lugli LF, Quesada CA, Andersen KM, Chadburn SE, Wiltshire AJ, Clark DB, Ribeiro G, Siebert L, Moraes ACM, Schmeisk R, Assis R, Camargo JL. Representation of the phosphorus cycle in the Joint UK Land Environment Simulator (vn5.5_JULES-CNP). GMD. link

Oliver RJ, Mercado LM, Clark DB, Huntingford C, Taylor CM, Vidale PL, McGuire PC, Todt M, Folwell S, Shamsudheen SV, Medlyn BE. Improved representation of plant physiology in the JULES-vn5.6 land surface model: photosynthesis, stomatal conductance and thermal acclimation. GMD. link

Lewis Palmer, Iain Robertson, Aliénor Lavergne, Deborah Hemming, Neil J. Loader, Giles Young, Darren Davies, Katja Rinne-Garmston, Sietse Los & Jamie Williams. Spatio-Temporal Variations in Carbon Isotope Discrimination Predicted by the JULES Land Surface Model. JGR Biogeoscienceslink

Parker RJ, Wilson C, Comyn-Platt E, Hayman G, Marthews TR, Bloom AA, Lunt MF, Gedney N, Dadson SJ, McNorton J, Humpage N, Boesch H, Chipperfield MP, Palmer PI & Yamazaki D. Evaluation of Wetland CH4 in the JULES Land Surface Model Using Satellite Observations. Biogeoscienceslink

United Nations Environment Programme. Spreading like Wildfire – The Rising Threat of Extraordinary Landscape Fires. A UNEP Rapid Response Assessment. Nairobi. link

Wong CYS, Mercado LM, Arain MA, Ensminger I, Remotely sensed carotenoid dynamics improve modelling photosynthetic phenology in conifer and deciduous forests. Agricultural and Forest Meteorology. link

Zeri M, Williams K, Cunha APMA, Cunha‐Zeri G, Vianna MS, Blyth EM, Marthews TR, Hayman GD, Costa JM, Marengo JA, Alvalá RCS, Moraes OLL & Galdos MV. Importance of including soil moisture in drought monitoring over the Brazilian semiarid region: An evaluation using the JULES model, in situ observations, and remote sensing. Climate Resilience and Sustainability. link



Blyth EMB et al. Advances in Land Surface Modelling. Current Climate Change Reportslink

Burton, C., Kelley, D. I., Jones, C. D., Betts, R. A., Cardoso, M., & Anderson,, L. (2021) South American fires and their impacts on ecosystems increase with continued emissions. Climate Resil Sustain, 00, e8. link

Caen, A., Smallman, T.L., de Castro, A.A., Robertson, E., von Randow, C., Cardoso, M., Williams, M. Evaluating two land surface models for Brazil using a full carbon cycle benchmark with uncertainties. Climate Resilience and Sustainability. link

Castillo JM, Lewis HW, Mishra A, Mitra A, Polton J, Brereton A, Saulter A, Arnold A, Berthou S, Clark D, Crook J, Das A, Edwards J, Feng X, Gupta A, Joseph S, Klingaman N, Momin I, Pequignet C, Sanchez C, Saxby J & Valdivieso da Costa M. The Regional Coupled Suite (RCS-IND1): application of a flexible regional coupled modelling framework to the Indian region at kilometre scale. GMD. link

Fatima, H. et. al. Comparison of JULES simulated soil moisture over Indian region. Mausam 72(2), 415-424. link

Franke, J. A. et al. Emulating the GGCMI Phase II experiment: global gridded emulators of crop model responses to changes in CO2, temperature, nitrogen, and water (protocol version 1.0). GMDlink

Gentile ES, Gray SL, Barlow JF, Lewis HW & Edwards JM. The Impact of Atmosphere–Ocean–Wave Coupling on the Near-Surface Wind Speed in Forecasts of Extratropical Cyclones. Boundary-Layer Meteorology. link

Harper, A. et al. Improvement of modelling plant responses to low soil moisture in JULESvn4.9 and evaluation against flux tower measurements. GMD link

Hertwig, D. et al. High-resolution global climate simulations: Representation of cities. Int J Climatologylink

Lavergne, A. et al. (in review). Global decadal variability of plant carbon isotope discrimination and its link to gross primary production. Global Change Biology.

Lewis HW & Dadson SJ. A regional coupled approach to water cycle prediction during winter 2013/14 in the United Kingdom. Hydrological Processes. link

Marthews TR, Dadson SJ, Clark DB, Blyth EM, Hayman G, Yamazaki D, Becher ORE, Martínez-de la Torre A, Prigent C & Jiménez C (in review 2021). Inundation prediction in tropical wetlands from JULES-CaMa-Flood global land surface simulations. HESSlink

Mathison, C et al. Implementation of sequential cropping into JULESvn5.2 land–surface model, GMDlink

Müller, C et al. Exploring uncertainties in global crop yield projections in a large ensemble of crop models and CMIP5 and CMIP6 climate scenarios. ERLlink

Osborne SR & Weedon GP. Observations and Modeling of Evapotranspiration and Dewfall during the 2018 Meteorological Drought in Southern England. JHM link

O’Sullivan M, Zhang Y, Bellouin N, Harris I, Mercado LM, Sitch S, Ciais P, Friedlingstein P. Aerosol–light interactions reduce the carbon budget imbalance. Environmental Research Letters. link

Restrepo‐Coupe Natalia, Albert LP, Longo M, Baker I, Levine Naomi, Mercado LM, da Araujo AC, Christoffersen BO, Costa MH, Fitzjarrald DR, Galbraith D, Imbuzeiro H, Malhi Y, von Randow C, Zeng X, Moorcroft P, Saleska SR. Understanding water and energy fluxes in the Amazonia: lessons from an observation‐model intercomparison. Global Change Biology. link

Rosan, T. et al. A multi-data assessment of land use and land cover emissions from Brazil during 2000-2019. ERLlink

Seo et al.: Assimilation of SMAP and ASCAT soil moisture retrievals into the JULES land surface model using the Local Ensemble Transform Kalman Filter. Remote Sensing of Environment 253:112222. link

Teckentrup, L., De Kauwe, M. G. et al. (in review). Assessing the representation of the Australian carbon cycle in global vegetation models, Biogeosciences Discussions link

Vidale PL et al. On the treatment of soil water stress in GCM simulations of vegetation physiology. Frontiers in Environmental Sciencelink

Wiltshire A et al. JULES-CN: a coupled terrestrial carbon–nitrogen scheme (JULES vn5.1). GMDlink

Wolffe, MC et al. Temporal variability in the impacts of particulate matter on crop yields on the North China Plain. Science of the Total Environment. link

Young, PJ et al. The Montreal Protocol protects the terrestrial carbon sink. Naturelink



Argles, A. P. K. Robust Ecosystem Demography (RED version 1.0): a parsimonious approach to modelling vegetation dynamics in Earth system models. GMD link

Batelis S et al.: Towards the representation of groundwater in the Joint UK Land Environment Simulator. link

Burton, C., Betts, R.A., Jones, C.D., Feldpausch, T.R., Cardoso, M. and Anderson, L.O. ‘El Niño Driven Changes in Global Fire 2015/16’. Frontiers in Earth Sci link

Chadburn, S. E. et al. Modeled Microbial Dynamics Explain the Apparent Temperature Sensitivity of Wetland Methane Emissions. Global Biogeochemical Cycles link

Davies-Barnard T, Meyerholt J, Zaehle S, Friedlingstein P, Brovkin V, Fan Y, Fisher RA, Jones CD, Lee H, Peano D, Smith B, Wårlind D & Wiltshire AJ. Nitrogen cycling in CMIP6 land surface models: progress and limitations. Biogeoscienceslink

Eller C. et al. Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate. New Phytologist link

Jones S. et al.. The impact of a simple representation of non-structural carbohydrates on the simulated response of tropical forests to drought. Biogeosciences link

Lasslop, G., Hantson, S., Harrison, S.P., Bachelet, D., Burton, C., Forkel, M., Forrest, M., Li, F., Melton, J.R., Yue, C., Archibald, S., Scheiter, S., Arneth, A., Hickler, T. and Sitch, S. Global ecosystems and fire: multi‐model assessment of fire‐induced tree cover and carbon storage reduction. Glob Change Biol. link

Leung, F. et al. Calibrating soybean parameters in JULES5.0 from the US-Ne2/3 FLUXNET sites and the SoyFACE-O3 experiment. GMDlink

Marthews TR, Blyth EM, Martínez-de la Torre A & Veldkamp T (2020). A global scale evaluation of extreme events: model skill and forcing variability in the Earth2Observe project. HESSlink

Paschalis, A. et al. Rainfall manipulation experiments as simulated by terrestrial biosphere models: Where do we stand? Global Change Biology link

Robinson and Clark: Using Gravity Recovery and Climate Experiment data to derive corrections to precipitation data sets and improve modelled snow mass at high latitude. link

Wiltshire, A. J., Burke, E. J., Chadburn, S. E., Jones, C. D., Cox, P. M., Davies-Barnard, T., Friedlingstein, P., Harper, A. B., Liddicoat, S., Sitch, S. A., and Zaehle, S.: JULES-CN: a coupled terrestrial Carbon-Nitrogen Scheme (JULES vn5.1), Geosci. Model Dev. Discuss. link

Wiltshire, A. J., Duran Rojas, M. C., Edwards, J. M., Gedney, N., Harper, A. B., Hartley, A. J., Hendry, M. A., Robertson, E., and Smout-Day, K.: JULES-GL7: the Global Land configuration of the Joint UK Land Environment Simulator version 7.0 and 7.2, Geosci. Model Dev., 13, 483–505. link

Zeri, M. et al. Importance of including soil moisture in drought monitoring over the Brazilian semiarid region: An evaluation using the JULES model, in situ observations, and remote sensing. Climate Resilience and sustainability link


Burton, C., Betts, R., Cardoso, M., Feldpausch, T. R., Harper, A., Jones, C. D., Kelley, D. I., Robertson, E., and Wiltshire, A.: Representation of fire, land-use change and vegetation dynamics in the Joint UK Land Environment Simulator vn4.9 (JULES), Geosci. Model Dev., 12, 179-193. link

Fleischer K et al. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nature Geoscience. link

Kimball et al.: Simulation of maize evapotranspiration: An inter-comparison among 29 maize models. Agricultural and Forest Meteorology 271:264-284. link

Lewis, H.W. et al.: The UKC3 regional coupled environmental prediction system. link

Malavelle FF et al. Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon rainforest productivity with an Earth system model. Atmospheric Chemistry and Physics. link

Marthews TR, Jones RG, Dadson SJ, Otto FEL, Mitchell D, Guillod BP & Allen MR (2019). The impact of human-induced climate change on regional drought in the Horn of Africa. Journal of Geophysical Research (Atmospheres). link

Martinez et al.: Using observed river flow data to improve the hydrological functioning of the JULES land surface model (vn4.3) used for regional coupled modelling in Great Britain (UKC2). link

Martinez et al.: Evaluation of Drydown Processes in Global Land Surface and Hydrological Models Using Flux Tower Evapotranspiration. link

Paspaldzhiev I, Williams K & Falloon P: Rainfall disaggregation via multiplicative random cascades in the JULES land surface model. Hadley Centre Technical Note 105. link

Sellar et al.: Implementation of U.K. Earth System Models for CMIP6. link

Shannon, S., Smith, R., Wiltshire, A., Payne, T., Huss, M., Betts, R., Caesar, J., Koutroulis, A., Jones, D., and Harrison, S.: Global glacier volume projections under high-end climate change scenarios, The Cryosphere, 13, 325-350, link

Vinodkumar, and I. Dharssi. Evaluation and calibration of a high-resolution soil moisture product for wildfire prediction and management, Agriculture and Forest Meteorology 264:27–39. doi: 10.1016/j.agrformet.2018.09.012. link

Williams et al.: How can the First ISLSCP Field Experiment contribute to present-day efforts to evaluate water stress in JULESv5.0? Geoscientific Model Development 12:3207–3240. link

Yang H, Huntingford C, Wiltshire A, Sitch S & Mercado L. Compensatory climate effects link trends in global runoff to rising atmospheric CO2 concentration. Environmental Research Letters 14:124075. link

Zhao, M., Zhang, H. & Dharssi, I. On the soil moisture memory and influence on coupled seasonal forecasts over Australia. Climate Dynamics. link



Burke et al. CO2 loss by permafrost thawing implies additional emissions reductions to limit warming to 1.5 or 2 °C. Environmental Research Letters. link

Harper, A. B., Wiltshire, A. J., Cox, P. M., Friedlingstein, P., Jones, C. D., Mercado, L. M., Sitch, S., Williams, K., and Duran-Rojas, C.: Vegetation distribution and terrestrial carbon cycle in a carbon cycle configuration of JULES4.6 with new plant functional types, Geosci. Model Dev., 11, 2857-2873,, 2018.  link

Lewis, H.W. et al. The UKC2 regional coupled environmental prediction system. link

Parker, R.J. et al. Evaluating year-to-year anomalies in tropical wetland methane emissions using satellite CH4 observations. RSE. link

Pugh et al. A Large Committed Long‐Term Sink of Carbon due to Vegetation Dynamics. Earth's Future. link

Rap A, Scott CE, Reddington CL, Mercado L, Ellis RJ, Garraway S, Evans MJ, Beerling DJ, MacKenzie AR, Hewitt CN, Spracklen DV. Enhanced global primary production by biogenic aerosol via diffuse radiation fertilization. Nature Geoscience 11:640-644. link

Warren E, C Charlton-Perez, S Kotthaus, H Lean, S Ballard, E Hopkin, S Grimmond. Evaluation of forward-modelled attenuated backscatter using an urban ceilometer network in London under clear-sky conditions Atmospheric Environment 191:532-547. link



Burke E., A. Ekici, Y. Huang, S. Chadburn, C. Huntingford, P. Ciais, P. Friedlingstein, S. Pengand G. Krinner (2017). Quantifying uncertainties of permafrost carbon-climate feedbacks. Biogeosciences 14:3051-3066. link

Burke E., S. Chadburn and A. Ekici (2017). A vertical representation of soil carbon in the JULES landsurface scheme (vn4.3permafrost) with a focus on permafrost regions. Geoscientific Model Development 10:959-975. link

Hopcroft, P.O., Valdes, P.J., Harper, A.B. & Beerling, D.J. (2017). Multi vegetation model evaluation of the Green Sahara climate regime, Geophysical Research Letters, 6804-6813. link

Iwema, J., Rosolem, R., Rahman, M., Blyth, E., and Wagener, T.: Land surface model performance using cosmic-ray and point-scale soil moisture measurements for calibration, Hydrol. Earth Syst. Sci., 21, 2843-2861, 2017. link

Nakhavali, M., Friedlingstein, P., Lauerwald, R., Tang, J., Chadburn, S., Camino-Serrano, M., Guenet, B., Harper, A., Walmsley, D., Peichl, M., and Gielen, B. Representation of dissolved organic carbon in the JULES land surface model (vn4.4_JULES-DOCM). Geoscientific Model Development Discussions. link

Rahman, M. and Rosolem, R.: Towards a simple representation of chalk hydrology in land surface modelling, Hydrol. Earth Syst. Sci., 21, 459-471, doi:10.5194/hess-21-459-2017, 2017. link

Schellekens, J., Dutra, E., Martínez-de la Torre, A., Balsamo, G., van Dijk, A., Sperna Weiland, F., Minvielle, M., Calvet, J.-C., Decharme, B., Eisner, S., Fink, G., Flörke, M., Peßenteiner, S., van Beek, R., Polcher, J., Beck, H., Orth, R., Calton, B., Burke, S., Dorigo, W., and Weedon, G. P. A global water resources ensemble of hydrological models: the eartH2Observe Tier-1 dataset, Earth System Science Data 9:389-413. link

Slevin D, Simon F. B. Tett, Jean-François Exbrayat, A. Anthony Bloom, and Mathew Williams. Global evaluation of gross primary productivity in the JULES land surface model v3.4.1. Geoscientific Model Development link

Williams, K., Gornall, J., Harper, A., Wiltshire, A., Hemming, D., Quaife, T., Arkebauer, T., and Scoby, D. Evaluation of JULES-crop performance against site observations of irrigated maize from Mead, Nebraska. Geoscientific Model Development 10:1291-1320. link



Harper, A. B., Cox, P. M., Friedlingstein, P., Wiltshire, A. J., Jones, C. D., Sitch, S., Mercado, L. M., Groenendijk, M., Robertson, E., Kattge, J., Bönisch, G., Atkin, O. K., Bahn, M., Cornelissen, J., Niinemets, Ü., Onipchenko, V., Peñuelas, J., Poorter, L., Reich, P. B., Soudzilovskaia, N. A., and Bodegom, P. V.: Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information, Geosci. Model Dev., 9, 2415-2440, doi:10.5194/gmd-9-2415-2016, 2016.

O'Sullivan, M., A. Rap, C. L. Reddington, D. V. Spracklen, M. Gloor, and W. Buermann. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century, Geophys. Res. Lett., 43, 8060–8067, doi:10.1002/2016GL068965.

Papadimitriou, L.V., Koutroulis, A.G., Grillakis, M.G. and Tsanis, I.K., 2016. High-end climate change impact on European runoff and low flows-exploring the effects of forcing biases. Hydrology and Earth System Sciences, 20(5), p.1785.
Van den Hoof, C., and F. Lambert. Mitigation of drought negative effect on ecosystem productivity by vegetation mixing, J. Geophys. Res. Biogeosci., 121, doi:10.1002/2016JG003625.

Raoult, N. M., Jupp, T. E., Cox, P. M., and Luke, C. M.: Land-surface parameter optimisation using data assimilation techniques: the adJULES system V1.0, Geosci. Model Dev., 9, 2833–2852. link

TeBeest, M., Sitters, J., Menard, C. Oloffson, J. Reindeer  grazing  increases  summer  albedo  by  reducing  shrub abundance  in  Arctic  tundra, Environmental Research Letters 11. link



Anav et al. Spatiotemporal patterns of terrestrial gross primary production: A review. Reviews of Geophysics. link

Chadburn S., E. Burke, R. Essery, J. Boike, M. Langer, M. Heikenfeld, P. Cox and P. Friedlingstein. An improved representation of physical permafrost dynamics in the JULES land-surface model. Geoscientific Model Development 8:1493-1508. link

Chadburn S., E. Burke, R. Essery, J. Boike, M. Langer, M. Heikenfeld, P. Cox and P. Friedlingstein. Impact of model developments on present and future simulations of permafrost in a global land-surface model. The Cryosphere 9:1505-1521. link

Ekici A., S. Chadburn, N. Chaudhary, L. Hajdu, A. Marmy, S. Peng, J. Boike, E. Burke, A. Friend,C. Hauck, G. Krinner, M. Langer, P. Miller, and C. Beer. Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes. The Cryosphere 9:1343-1361. link

Ménard, C.B., Ikonen, J., Rautiainen, K., Aurela, M., Arslan, A.N., and Pulliainen, J. Effects of Meteorological and Ancillary Data, Temporal Averaging, and Evaluation Methods on Model Performance and Uncertainty in a Land Surface Model, Journal of Hydrometeorology, 16, 2559-2576

Osborne, T., Gornall, J., Hooker, J., Williams, K., Wiltshire, A., Betts, R., and Wheeler, T.: JULES-crop: a parametrisation of crops in the Joint UK Land Environment Simulator, Geosci. Model Dev., 8, 1139-1155, doi:10.5194/gmd-8-1139-2015.

Rap, A., Spracklen, D.V., Mercado, L., Reddington, C.L., Haywood, J.M., Ellis, R.J., Phillips, O., Artaxo, P., Bonal, D., Restrepo Coupe, N., Butt, N. Fires increase Amazon forest productivity through increases in diffuse radiation, Geophysical Research Letters, 42(11), 4654-4662, doi:10.1002/2015GL063719.

Slevin, D., Tett, S. F. B., and Williams, M.: Multi-site evaluation of the JULES land surface model using global and local data, Geosci. Model Dev., 8, 295-316, doi:10.5194/gmd-8-295-2015.

Weedon, G.P., Prudhomme, C., Crooks, S., Ellis, R.J., Folwell, S.S., and Best, M.J. Evaluating the performance of hydrological models via cross-spectral analysis: case study of the Thames Basin, United Kingdom. J. Hydrometeorol. 16, 214-231, doi: 10.1175/JHM-D-14-0021.1.

Williams, K. E. and Falloon, P. D.: Sources of interannual yield variability in JULES-crop and implications for forcing with seasonal weather forecasts, Geosci. Model Dev., 8, 3987-3997, doi:10.5194/gmd-8-3987-2015.

Yang Yang, Michael Uddstrom, Grant Pearce, and Mike Revell. Reformulation of the Drought Code in the Canadian Fire Weather Index System Implemented in New Zealand. J. Appl. Meteor. Climatol., 54, 1523–1537.



Gedney, N., Huntingford, C., Weedon, G.P., Bellouin, N., Boucher, O. and Cox, P.M. Detection of solar dimming and brightening effects on Northern Hemisphere river flow. Nature Geoscience, 7, 796-800, doi:10.1038/NGEO02263.

Harding, R.J., Weedon, G.P., van Lanen, H.A.J. and Clark, D.B. The future for global water assesment. Journal of Hydrology, 518, 186-193, doi:10.1016/j.jhydrol.2014.05.014.

Tsarouchi, G. M., Buytaert, W., and Mijic, A.: Coupling a land surface model with a crop growth model to improve ET flux estimations in the Upper Ganges basin, India, Hydrol. Earth Syst. Sci. Discuss., 11, 6843-6880, doi:10.5194/hessd-11-6843-2014.

Weedon, G.P., Balsamo, G., Bellouin, N., Gomes, S., Best, M.J. and Viterbo, P. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resources Research, 50, doi:10.1002/2014WR015638.

Williams K & Clark D: Disaggregation of daily data in JULES. Hadley Centre Technical Note 96. link



Burke, E. J.; Dankers, R.; Jones, C. D.; Wiltshire, A. J. A retrospective analysis of pan Arctic permafrost using the JULES land surface model, Climate Dynamics, 41: 1025-1038

De Kauwe, Martin G., Taylor, Christopher M., Harris, Philip P., Weedon, Graham P. and Ellis, Richard J. Quantifying Land Surface Temperature Variability for Two Sahelian Mesoscale Regions during the Wet Season. Journal of Hydrometeorology, doi: 10.1175/JHM-D-12-0141.1.

Huntingford, C., Zelazowski, P., Galbraith, D., Mercado, L. M., Sitch, S., Fisher, R., Lomas, M., Walker, A. P., Jones, C. D., Booth, B. B. B., Malhi, Y., Hemming, D., Kay, G., Good, P., Lewis, S. L., Phillips, O. L., Atkin, O. K., Lloyd, J., Gloor, E., Zaragoza-castells, J., Meir, P., Betts, R., Harris, P. P., Nobre, C., Marengo, J., & Cox, P. M. Simulated resilience of tropical rainforests to CO2-induced climate change, Nature Geoscience, 6(4), 268–273. 10.1038/ngeo1741

Jiménez, C., D.B.Clark , J. Kolassa, F.Aires, C.Prigent. A joint analysis of modeled soil moisture fields and satellite observations, Journal of Geophysical Research (Atmospheres), 118: 6771-6782. doi: 10.1002/jgrd.50430.

Maskell, L.C., A. Crowe, M.J. Dunbar, B. Emmett, P. Henrys, A.M. Keith, L.R. Norton, P. Scholefield, D.B. Clark, I.C. Simpson, S.M. Smart. Exploring the ecological constraints to multiple ecosystem service delivery and biodiversity, J. Applied Ecology, 50 (3): 561-571. doi: 10.1111/1365-2664.12085.

D. S. Moreira, S. R. Freitas, J. P. Bonatti, L. M. Mercado, N. M. É. Rosário, K. M. Longo, J. B. Miller, M. Gloor, and L. V. Gatti. Coupling between the JULES land-surface scheme and the CCATT-BRAMS atmospheric chemistry model (JULES-CCATT-BRAMS1.0): Applications to numerical weather forecasting and the CO2 budget in South America, Geosci. Model Dev., 6, 1243-1259

Sorensen J.P.R., Finch J.W., Ireson A.M., Jackson C.R. Comparison of varied complexity models simulating recharge at the field scale. Hydrological Processes, 28(4), 2091–2102, DOI: 10.1002/hyp.9752.

C. Van den Hoof, P.L. Vidale, A. Verhoef and C. Vincke: Improved Evaporative Flux Partitioning and Carbon Flux in the Land Surface Model JULES: Impact on the Simulation of Land Surface Processes in Temperate Europe, Agric. Forest Meteorol. 181:137–153.

Yang, Yang, Uddstrom, M., Revell, M. and Moore, S. Soil moisture simulation by JULES in New Zealand: verification and sensitivity tests. Met. Apps. doi: 10.1002/met.1426

Zulkafli, Z., Buytaert, W., Onof, C., Lavado, W., and Guyot, J. L.: A critical assessment of the JULES land surface model hydrology for humid tropical environments, Hydrol. Earth Syst. Sci., 17, 1113-1132, doi:10.5194/hess-17-1113-2013.



A. Arneth, L. Mercado, J. Kattge, and B. B. B. Booth. Future challenges of representing land-processes in studies on land-atmosphere interactions, Biogeosciences, 9, 3587-3599

Blyth, E., D. B. Clark, R. Ellis and C. George. Using earth observation data to evaluate a land surface model in three Siberian catchments. Boreal Env. Res., 17: 484-494

Burke et al. Uncertainties in the global temperature change caused by carbon release from permafrost thawing. The Cryosphere, 6, 1063-1076. link

Finney, D. L., Blyth, E., and Ellis, R.: Improved modelling of Siberian river flow through the use of an alternative frozen soil hydrology scheme in a land surface model, The Cryosphere, 6, 859-870, doi:10.5194/tc-6-859-2012.

Gudmundsson, L., L. M. Tallaksen, K. Stahl, D. B. Clark, E. Dumont, S. Hagemann, N. Bertrand, D. Gerten, J. Heinke, N. Hansaki, F. Voss, S. Koirala. Comparing large-scale hydrological model simulations to observed runoff percentiles in Europe, J. Hydrometeorology, 13: 604-620. doi: 10.1175/JHM-D-11-083.1

Hong, J., J. Kim and Y.-H. Byun. Uncertainty in carbon exchange modeling in a forest canopy due to kB-1 parameterizations, Quarterly Journal of the Royal Meteorological Society, 138, 699-706.

Marthews T.R., Malhi Y., Girardin C.A.J., Silva-Espejo J.E, Aragao L.E.O.C, Metcalfe D.B, Rapp J.M, Mercado L.M, Fisher R.A, Galbraith D.R, Fisher J.B., Salinas-Revilla N., Andrew D. Friend A.D. and Restrepo-Coupe N. Simulating forest productivity along a neotropical elevational transect: temperature variation and carbon use efficiency. Global Change Biology 18,2882-2898



Blyth, E., D. B. Clark, R. Ellis, C. Huntingford, S. Los, M. Pryor, M. Best and S. Sitch. A comprehensive set of benchmark tests for a land surface model of simultaneous fluxes of water and carbon at both the global and seasonal scale, Geosci. Model Dev., 4, 255-269, doi:10.5194/gmd-4-255-2011

Falloon et al. Direct soil moisture controls of future global soil carbon changes: An important source of uncertainty. GBC. link

Haddeland, I., D.B. Clark, W. Franssen, F. Ludwig, F. Voß, N. W. Arnell, N. Bertrand, M. Best, S. Folwell, D. Gerten, S. Gomes, S. N. Gosling, S. Hagemann, N. Hanasaki, R. Harding, J. Heinke, P. Kabat, S. Koirala, T. Oki, J. Polcher, T. Stacke, P. Viterbo, G. P. Weedon, P. Yeh. Multi-Model Estimate of the Global Terrestrial Water Balance: Setup and First Results. Journal of Hydrometeorology, doi:10.1175/2011JHM1324.1

Hong, J. and J. Kim. Impact of the Asian monsoon climate on ecosystem carbon and water exchanges: A wavelet analysis and its ecosystem modeling implication, Global Change Biology, 17(5), 1900-1916.

Huntingford C., Cox P.M, Mercado L.M., Sitch S., Bellouin N., Boucher O. and Gedney O. Highly contrasting effects of different climate forcing agents on terrestrial ecosystem services. Phil, Trans, R. Soc A doi:10.1098/rsta.2010.0314

Pacifico, F., Harrison, S. P., Jones, C. D., Arneth, A., Sitch, S., Weedon, G. P., Barkley, M. P., Palmer, P. I., Serça, D., Potosnak, M., Fu, T.-M., Goldstein, A., Bai, J., and Schurgers, G.: Evaluation of a photosynthesis-based biogenic isoprene emission scheme in JULES and simulation of isoprene emissions under present-day climate conditions, Atmos. Chem. Phys., 11, 4371-4389, doi:10.5194/acp-11-4371-2011.

Prudhomme, C., S. Parry, J. Hannaford, D.B.Clark, S. Hagemann, F. Voß. How well do large-scale models reproduce regional hydrological extremes in Europe?, J. Hydrometeorology, 12: 1181-1204. doi: 10.1175/2011JHM1387.1

C. Van den Hoof, E. Hanert, P.L. Vidale: Simulating dynamic crop growth with an adapted land surface model – JULES-SUCROS: model development and validation, Agric. Forest Meteorol. 151:137–153

Yang, Yang, M. Uddstrom, and M. Duncan. Effects of short spin-up periods on soil moisture simulation and the causes over New Zealand, J. Geophys. Res., 116, D24108, doi:10.1029/2011JD016121.



Bennie, J.J., A.J. Wiltshire, A.N. Joyce, D. Clark, A.R. Lloyd, J. Adamson, T. Parr, R. Baxter and B. Huntley. Characterising inter-annual variation in the spatial pattern of thermal microclimate in a UK upland using a combined empirical-physical model, Agricultural and Forest Meteorology, 150(1), 12-19, doi:10.1016/j.agrformet.2009.07.014

Churkina, G., Zaehle, S., Hughes, J., Viovy, N., Chen, Y., Jung, M., Heumann, B. W., Ramankutty, N., Heimann, M., and Jones, C.: Interactions between nitrogen deposition, land cover conversion, and climate change determine the contemporary carbon balance of Europe, Biogeosciences, 7, 2749-2764, link

Dadson, S.J., I. Ashpole, P. Harris, H.N. Davies, D.B. Clark, E. Blyth, C.M. Taylor. Wetland inundation dynamics in a model of land surface climate: Evaluation in the Niger inland delta region, J. Geophys. Res., 115, D23114, doi:10.1029/2010JD014474

Huntingford, C., Booth, B. B. B., Sitch, S., Gedney, N., Lowe, J. A., Liddicoat, S. K., Mercado, L. M., Best, M. J., Weedon, G. P., Fisher, R. A., Lomas, M. R., Good, P., Zelazowski, P., Everitt, A. C., Spessa, A. C., and Jones, C. D. IMOGEN: an intermediate complexity model to evaluate terrestrial impacts of a changing climate, Geosci. Model Dev., 3, 679-687, doi:10.5194/gmd-3-679-2010.

Peters et al.. Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations. GCB. link



Boone, A., P. de Rosnay, G. Balsamo, A. Beljaars, C. Chopin, B. Decharme, C. Delire, A. Ducharne, S. Gascoin, M. Grippa, F. Guichard, Y. Gusev, P. Harris, L. Jarlan, L. Kergoat, E. Mougin, O. Nasonova, A. Norgaard, T. Orgeval, C. Ottlé, Y. France, I. Poccard-Leclercq, J. Polcher, I. Sandholt, S. Saux-Picart, C. Taylor, and Y. Xue. The AMMA land surface model intercomparison project (ALMIP). Bull. Amer. Met. Soc., 90, 1865–1880, doi:10.1175/2009BAMS2786.1.

Ellis, R. J., C. M. Taylor, G. P. Weedon, N. Gedney, D. B. Clark and S. Los. Evaluating the simulated seasonality of soil moisture with earth observation data, Journal of Hydrometeorology, 10, 1548-1560

Mercado L.M, Bellouin N., Sitch S., Boucher O., Huntingford C., Wild M. and Cox P.M. Modeling the impact of diffuse radiation changes on the terrestrial carbon sink over the 1900-2000 period. Nature, 458, 1014-1018



Harrison, R. G., Jones, C. D., and Hughes, J. K.: Competing roles of rising CO2 and climate change in the contemporary European carbon balance, Biogeosciences, 5, 1-10, link

Huntingford C, Fisher RA, Mercado LM, Booth BB, Sitch S, Harris PP, Cox PM, Jones CD, Betts RA, Malhi Y, Harris GR, Collins M, Moorcroft P. Towards quantifying uncertainty in predictions of Amazon ‘dieback’. Philos Trans R Soc Lond B Biol Sci. 363(1498):1857-64.

Sitch, S. et al.. Evaluation of the terrestrial carbon cycle, future plant geography and climate‐carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). GCB. link

Vetter, M., Churkina, G., Jung, M., Reichstein, M., Zaehle, S., Bondeau, A., Chen, Y., Ciais, P., Feser, F., Freibauer, A., Geyer, R., Jones, C., Papale, D., Tenhunen, J., Tomelleri, E., Trusilova, K., Viovy, N., and Heimann, M.: Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly using seven models, Biogeosciences, 5, 561-583, link



Alton, P., L. Mercado, and P. North. A sensitivity analysis of the land-surface scheme JULES conducted for three forest biomes: Biophysical parameters, model processes, and meteorological driving data, Global Biogeochem. Cycles, 20, GB1008, doi:10.1029/2005GB002653

Mercado L.M., Huntingford C., Gash J.H.C., Cox P.M. & Jogireddy V. Improving the representation of radiation interception and photosynthesis for climate model applications. Tellus Series B-Chemical and Physical Meteorology 59:553-565.